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Chapter 8

Associations between human genetic and cranio-
metric differentiation across North Eurasia:  
The role of geographic scale 
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Abstract 

This study sets out to consider the influence of geographical scale on the associ-
ation between molecular genetic differentiation and craniometric phenotypic dif-
ferentiation in recent human populations. We employ interpopulation distance 
measurements for three different anatomical regions of the skull and for three dif-
ferent systems of genetic markers in 30 Eurasian populations. Our original dataset 
comprises 703 male skulls measured for 21 mid-facial, 15 neurocranial and 6 man-
dibular measurements, in all cases assessing Mahalanobis distances between 
populations. Published genetic data of more than 2,000 individuals were summar-
ized by between-population FST based on allele frequencies of autosomal single 
nucleotide polymorphisms (SNPs), as well as Cavalli-Sforza distances based on 
the frequencies of 19 Y-chromosome and 29 mtDNA haplogroups. For different 
geographical scales of analysis, we used Mantel tests to assess the association 
of craniometric and genetic inter-population distances for the different cranial 
regions and genetic markers. Our results show that the level of association 
between craniometric and genetic distances depends on the part of the skull 
quantified and on the set of variables employed. In our dataset, this association is 
much stronger for the mid-face than for the cranial vault. Furthermore, the Mantel 
test correlation coefficients for the broadest, intercontinental level of analysis are 
moderate to high, and some are among the highest published so far. They are 
consistently lower at smaller geographic levels of comparison. Autosomal SNP 
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distances exhibit the strongest associations with cranial morphology for almost 
all anatomical regions and at all geographical levels. Our results are evaluated 
against the background of previous studies assessing the correlation between 
craniometric, genetic, and geographic distances, drawing attention to the need 
for investing much more effort in studying factors affecting the association 
between genetic and craniometric distances at regional and local geographical 
levels. 

INTRODUCTION 

During the last two decades, molecular genetic data have been exten-
sively used to validate the role of craniometric variables as a reliable 
source of information for reconstructing human population history 
(Roseman 2004; Harvati and Weaver 2006a; von Cramon-Taubadel 
2009a; Evteev and Movsesian 2016; Reyes-Centeno et al. 2017, among 
others). This endeavor follows a decades-long debate on the evolutionary 
mechanisms affecting cranial form, particularly the degree of environ-
mental and hereditary effects on cranial dimensions (Boas 1912, 1940; 
Sparks and Jantz 2002; Relethford 2004b, among others). On theoretical 
grounds, both biological data sources are expected to reflect the natural 
history of human populations (Relethford and Harpending 1994). For 
modern humans, this has been empirically supported by the observation 
that both molecular genetic diversity and cranial phenotypic diversity 
within modern human populations decreases from Africa, the continental 
geographic region of origin in the deep past (e.g., Relethford 2004a; 
reviewed in Reyes-Centeno 2016). In addition, genetic and cranial diver-
sity between populations, i.e., biological distance, increases as a function 
of geographical separation between populations, i.e., geographical dis-
tance (Ramachandran 2005; Betti et. al. 2010). Methodologically, the 
approach for validating the utility of craniometric variables is therefore 
often based on the use of genetic distance data as a “gold standard,” 
where it is employed as a benchmark for establishing the degree of bio-
logical variation between human populations. In general, it is thought 
that the higher the degree of association between craniometric and gen-
etic distances is, the better the former reflects the biological relationship 
between human populations. In this chapter, we concentrate on this meth-
odological approach for validating the utility of craniometric variables in 
reconstructing the human past. 

Early heuristic studies comparing genetic and craniometric distances 
at the global level were optimistic in reporting moderate to high correla-
tions between the two types of data (Relethford 2004a; Roseman 2004; 
Gonzalez-Jose et al. 2004; Harvati and Weaver 2006a, 2006b), which 
comprised both linear and three-dimensional morphometric variables as 
well as functional and non-functional regions of the genome. However, a 
bulk of subsequent studies has shown that the strength of the association 
between craniometric and genetic distances depends on a number of fac-
tors, including the part of the skull studied, morphometric technique 
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applied, system of genetic markers employed and, importantly, on the 
geographical scale of comparison, i.e., global (intercontinental), conti-
nental, or local (Harvati and Weaver 2006a, b; Smith et al. 2007; Smith 
2009; von Cramon-Taubadel 2009a, 2009b, 2011a, 2011b, 2016; Ricaut 
et al. 2010; Reyes-Centeno et al. 2014, 2015, 2017; Herrera et al. 2014; 
von Cramon-Taubadel and Lycett 2014; Smith et al. 2016; Evteev and 
Movsesian 2016; Evteev et al. 2017; Moiseyev, de la Fuente 2017). For 
example, whereas some studies select parts of the skull with respect to 
hypotheses on skeletal integration and modularity (e.g., von Cramon-
Taubadel 2011), others sample skull regions with respect to hypotheses 
on their phylogenetic utility (e.g., Harvati and Weaver 2006a, 2006b; 
Smith 2009; von Cramon-Taubadel 2009). In fact, because of distinct 
research designs, a wide range of statistical association between pheno-
typic and genetic variation has also been demonstrated in earlier works 
using anthropometric traits and genetic markers (Hiernaux 1956; 
Sanghvi 1956; Friedlander et al. 1971; Rothhammer and Spielman 1972; 
Spielman 1973; Neel et al. 1974; see also Relethford and Lees 1982 and 
Jorde 1980 for excellent reviews of previous literature). The relative 
effect of the study design factors listed above remains to be systemati-
cally tested since the great majority of recent studies were carried out at 
the global level and most of these employ only one system of molecular 
genetic markers.  

The question of which anatomical region of the cranium reflects 
population history best has been a matter of great interest. It is generally 
agreed that a) the mandible displays the lowest correlations and, within 
the cranium, b) the temporal bone performs slightly better, probably due 
to its mostly chondrocranial embryonic origin (Harvati and Weaver 
2006a; Nicholson and Harvati 2006; Smith 2009; Reyes-Centeno et al. 
2017). However, results of different studies are not directly comparable 
due to the lack of uniformity in their research designs. It is also unclear if 
the trends observed at the global (intercontinental) level are applicable to 
a lower level of population differentiation, i.e., continental or sub-conti-
nental. This study therefore sets out to explore to what degree (i) the 
selection of craniometric and genomic markers, on the one hand, and (ii) 
the geographic scale of analysis, on the other, affect the association 
between genetic differentiation and craniometric interpopulation dis-
tances across North Eurasia. We employ measurements of three anatomi-
cal regions of the skull and three systems of genetic markers, as well as 
geographic distances across three geographic analytical scales. Impor-
tantly, the vast geographical space of North Eurasia has been underrepre-
sented in previous craniometric-genetic association studies and the pres-
ent work is thus intended to fill this gap. The results obtained for the stu-
dy’s dataset are evaluated against a background of a large number of cor-
relation coefficients between craniometric, genetic, and geographic dis-
tances in the literature. Finally, we discuss the implications of our study 
in the context of a broader debate on the evolution of cranial form in 
modern humans. 



Evteev, Santos, Grosheva, Reyes-Centeno, Ghirotto 

160 Words, Bones, Genes, Tools: DFG Center for Advanced Studies

MATERIALS AND METHODS 

The cranial sample employed in this study consists of 703 male skulls 
from 30 Eurasian populations (Table 1) measured by one of the authors 
(AE; see Evteev et al. 2014 for the intraobserver error test) using a set of 
standard calipers according to a protocol including 21 mid-facial, 15 neu-
rocranial and 6 mandibular measurements (see Appendix, Table S1, at the 
end of this chapter). Missing data were imputed by mean substitution 
with respect to each population, except in cases where an entire cranial 
region was missing. For example, mandibles were present only in some 
of the samples (see Table 1 for details of sample sizes). Raw cranial 
measurements used in this study are available on request. Matrices of 
Mahalanobis distances were calculated for every set of groups/variables 
separately for every particular analysis. Each analysis was conducted 
once using the raw craniometric variables and again using size-standard-
ized variables, calculated by dividing each measurement by the geo-
metric mean of all measurements, per individual (Darroch and 
Mosimann 1985). 

Cranial samples were matched with molecular genetic data based on 
ethno-linguistic affinities and geographical origin. In total, we analyzed 
genetic data for three types of loci: autosomal single nucleotide polymor-
phisms (SNPs), mitochondrial DNA (mtDNA), and Y-chromosome 
DNA. First, the autosomal data were collected from two SNP chip array 
sources for published data of 26 Eurasian populations, comprising 1450 
individuals in total (Tables S2, S3, Appendix). Data for the Adygeans 
were used for the Shapsugi cranial sample. Genetic variation between 
populations for SNP allele frequencies was calculated by between-popu-
lation FST (Weir and Cockerham 1984) using the software 4P (Benazzo et 
al. 2015). Inter-population FST measures have been found to be highly 
correlated with Mahalanobis distances for craniometric variables (Reyes-
Centeno et al. 2017). Second, we used haplogroup frequencies for the Y-
chromosome and mtDNA data (Evteev et al. 2017), compiled from 
numerous studies (Table S4, Appendix) carried out using very divergent 
methodological approaches and styles of publishing of raw material (full 
mitochondrial genomes, or HVSI and II sequences, or frequencies of 
haplogroups). Thus, the only possible way of compiling these into a 
single dataset was to employ haplogroup frequencies. The Y-chromo-
some data for the Ulchi include samples of the Nanai. In total, we used 
frequencies of 19 Y-chromosome haplogroups and 29 mtDNA haplo-
groups to calculate Cavalli-Sforza distances (Cavalli-Sforza and 
Edwards 1967) for each system of genetic markers. In all cases, we com-
piled distance matrices representing inter-population genetic variation 
for the different genetic markers (Tables S6–S9, Supplementry online 
material). Table 1 lists details of the availability of different types of gen-
etic markers for different cranial population samples. In most cases, all 
three molecular data types could be compiled.  
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Geographic distances between centroids of origin of all populations 
(Tables S10–S11, Supplementary online material) were calculated as 
great-circle distances (using the Haversine formula in: http://www.mov-
able-type.co.uk/scripts/latlong.html), ignoring possible water and moun-
tain barriers. In order to compare our results to previous studies, the 
strength of association between the matrices of craniometric, genetic, and 
geographic distances was assessed using Mantel tests (Smouse and Sokal 
1986). These were carried out in PAST (Hammer et al. 2011) by setting 
the similarity measure as “User distance” universally for all matrices and 
testing for significance via 9999 permutations of the matrix values. 
Results are reported as Pearson r correlation values with one-tailed p sig-
nificance values. In addition, we employed Dow-Cheverud tests (Dow 
and Cheverud 1985) to assess which of the subsets of the variables was 
statistically more associated with genomic markers in comparison to 
other cranial subsets. Dow-Cheverud tests were conducted in R using a 
script coded by M. W. Grabowski and C. C. Roseman. 

In order to test the role of the geographical level of comparison (see 
Fig. 1), we used three areal divisions: intercontinental, continental, and 
local. First, the main dataset (30 populations, intercontinental level) was 
divided into two subsets: “West Eurasia” (17 populations, continental 
level) and “East Eurasia” (12 populations, continental level). These two 
are based on the separation of Europe and Asia as distinct continents and 
corresponds with analytical sub-divisions of previous morphological and 
genetic studies (e.g., Howells 1989; Hanihara 2000; Reich et al. 2012; Fu 
et al. 2013). As the origin and degree of admixture in the Saami is not 
completely clear (see Tambets et al. 2004), this population was not 
included in any of the two subsets. The latter were further divided into 

Fig. 1.  
Geographic locations of the 
studied groups. 
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1      a: autosomal SNP data is present, b: Y-chromosome data is present, c: mtDNA data is present 
2      Abbreviations: RIMA – Research Institute and Museum of Anthropology, Moscow State University; MAE - 

Museum of Anthropology and Ethnography (the Kunstkamera), Saint-Petersburg; NHM - Natural History Museum, 
London; FRI - Francisc Rainer Institute, Bucharest; MDH - Musée de l'Homme, Paris.

Sample Genetic data 
availability1

Sample size 
(facial skeleton)

Sample size 
(neurocranium)

Sample size 
(mandible) Collection2

Abkhazian abc 15 15 0 RIMA

Armenian abc 26 26 0 RIMA

Bulgarian abc 15 14 7 RIMA

Buryat abc 19 19 17 MAE

Chukchi ac 31 30 14 RIMA

Druze abc 21 20 0 MAE

Eskimo (Siberian Yupik) abc 20 19 16 RIMA

Evenk bc 15 15 8 RIMA / MAE

Finn abc 21 21 11 RIMA /MAE

Han abc 20 19 0 RIMA /NHM

Italian abc 18 18 0 RIMA

Japanese abc 26 26 23 RIMA / MDH

Karelian abc 51 43 36 MAE

Khanty bc 21 21 11 RIMA

Komi abc 28 28 27 MAE

Latvian bc 21 20 14 RIMA

Mansi abc 16 16 0 RIMA

Mongol abc 18 18 0 MAE

Mordovian abc 28 25 25 RIMA

Norse abc 18 16 8 NHM

Ossetian abc 26 26 0 RIMA

Romanian abc 32 22 32 FRI

Russian abc 64 64 60 RIMA

Saami bc 27 27 24 MAE

Shapsug abc 15 15 0 RIMA

Turk abc 11 11 9 RIMA

Tuvinian abc 26 26 0 RIMA

Ukrainian abc 12 12 0 RIMA

Ulchi abc 22 21 17 RIMA / MAE

Yakut abc 20 20 15 RIMA / MAE

Total number of samples 30 30 19

Total number of individuals 703 673-683 374
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Table 1.  
Cranial sample populations, 
genomic data matching, sam-
ple sizes, provenance, and 
geography. 

Sub-continent/Region

West Eurasia/ Europe-Mediterranean

West Eurasia/Europe-Mediterranean

West Eurasia/Europe-Mediterranean

East Eurasia/North Asia

East Eurasia/North Asia

West Eurasia/Europe-Mediterranean

East Eurasia/North Asia

East Eurasia/North Asia

West Eurasia/Northeast Europe

East Eurasia/East Asia

West Eurasia/Europe-Mediterranean

East Eurasia/East Asia

West Eurasia/ Northeast Europe

East Eurasia/North Asia

West Eurasia/Northeast Europe

West Eurasia/Northeast Europe

East Eurasia/North Asia

East Eurasia/North Asia

West Eurasia/Northeast Europe

West Eurasia/Europe-Mediterranean

West Eurasia/Europe-Mediterranean

West Eurasia/Europe-Mediterranean

West Eurasia/Northeast Europe

West Eurasia/Europe-Mediterranean

West Eurasia/Europe-Mediterranean

East Eurasia/North Asia

West Eurasia/Northeast Europe

East Eurasia/North Asia

East Eurasia/North Asia
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two parts each according to the previously shown ecogeographic differ-
ences across those geographical levels (Evteev et al. 2014, 2017). The 
West Eurasian set was divided into a “Europe-Mediterranean” subset 
(10 populations, local level), including populations from South and West 
Europe, the Mediterranean, and the Caucasus, as well as into a “North-
east Europe” (7 populations, local level) subset. The East Eurasian set 
was divided into “North Asia” (10 populations, local level) and “East 
Asia” (2 populations, local level). The justification for such a division 
was the climate-morphology associations demonstrated in previous 
studies (Evteev et al. 2014, 2017) and separating the populations into 
presumably cold-adapted and non-cold-adapted. For instance, the Norse 
were included in the “Europe-Mediterranean” subset because, despite 
formally representing North Europe, they did not display a particularly 
strong climatic signal in their craniofacial morphology. Since only two 
populations were included in the “East Asia” subset, this level was not 
analyzed further. In total, 6 geographical scales and 3 hierarchical geo-
graphic levels of population differentiation were considered. The Kare-
lian sample was excluded from the Mantel tests involving mtDNA 
matrices in the “West Eurasia” and “North Europe” datasets since it was 
identified as a genetic outlier. In most analyses, samples genotyped 
through the Affymetrix array (referred as Affymetrix dataset hereafter) 
comprising 50786 autosomal SNPs were employed. However, analysis 
of the Northeast Europe level employed data from the Illumina array 
(Illumina dataset hereafter), which comprised 114109 markers from 
6 populations. The inclusion of both the Affymetrix and Illumina datasets 
for this particular level increased the number of population samples 
available for analysis (Tables S2, S3, Appendix). The two datasets pro-
vide very similar patterns of interpopulation distances (Mantel Pearson 
correlation: r = 0.98, two-tailed p = 0.04 after 1000 permutations) and 
were thus used interchangeably. 

In order to test how the level of genetic or morphological differenti-
ation within a geographical scale affects our Mantel test results, we 
evaluated the association between the mean Mantel correlation coeffi-
cients (Table 1) within a region and either mean autosomal FST or mean 
Mahalanobis distances (mid-face) within a region, quantified with the 
Spearman rank correlation coefficient (r).  

In order to compare our results to previous analyses, a database con-
taining about two hundred correlation coefficients between craniometric 
and anthropometric, as well as genetic distances in humans and non-
human primates, published to date was compiled (Table S12, Supple-
mentary online material). Ninety-six of these coefficients, calculated for 
worldwide (or intercontinental) modern human cranial samples using 
Mantel tests (Gonzalez-Jose et al. 2004; Roseman 2004; Harvati and 
Weaver 2006a, 2006b; Smith et al. 2007; Smith 2009; von Cramon-Tau-
badel 2009a, 2009b, 2011a, 2011b, 2016; Reyes-Centeno et al. 2017; 
Smith et al. 2016), were selected to be employed as source of comparison 
for our results.  
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A similar database containing more than eighty correlation coeffi-
cients between craniometric (anthropometric) and geographic distances, 
as well as latitude and longitude, in humans was also compiled 
(Table S13, Supplementary online material). Twenty eight of these coef-
ficients were calculated for worldwide (or intercontinental) modern 
human cranial samples and geographic distances using Mantel tests 
(Relethford 2004b; Gonzalez-Jose et al. 2001; Smith et al. 2007; Hubbe 
et al. 2009, 2010, 2011; Betti et al. 2010; von Cramon-Taubadel 2011b, 
2016; Noback and Harvati 2015; Reyes-Centeno et al. 2015) were 
selected to be compared with our results alongside with six coefficients 
(Rothhammer and Silva 1990; Lalueza Fox et al. 1996; Fabra and Demar-
chi 2011; Maley 2011; Weisensee 2013; Hubbe et al. 2014) for samples at 
lower geographic levels (continental, inter-continental, or local).   

RESULTS  

Associations at the intercontinental (North Eurasian) level.   

Table 2 presents the results of all matrix correlations calculated for 
different cranial anatomical regions, genetic markers, and geo-
graphic distances across the different analytical scales and using 
the raw dataset. Results are similar when using size-standardized 
craniometric variables (Table S5, Appendix). All the coefficients 
at the intercontinental level are moderate to high (Fig. 2). But the 
strength of the association is clearly different between different 
systems of genetic markers and different anatomical regions (see 
Figs. 2 and 3). Correlations with the autosomal SNP data demon-
strate the strongest associations, while they are weakest for the Y-
chromosome data. Considering the lower levels of population 
differentiation, the autosomal SNP matrices are consistently more 

Fig. 2.  
Correlations between the matrices of craniometric and 
genetic distances at the intercontinental analytical level.

Fig. 3.  
Mean coefficients obtained in 
the present study (interconti-
nental level) against the distri-
bution of 96 coefficients 
published previously.  
A) Different systems of genetic 
markers (arrows: SNP – black, 
mtDNA dark grey, Y-chromo-
some – light grey);  
B) Different skull anatomical 
regions (arrows: face – pink, 
cranium – green, mandible – 
light blue, vault – deep blue).
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Table 2.  
Correlations1 between the matrices of craniometric, genetic and geographic distances.

 
 
1      Values are Pearson r correlation values; bold type indicates statistical significance after 9999 permutations  

(Mantel test): one-tailed * p<0.05; ** p<0.01; *** p<0.001. 
2      Number of variables in anatomical region: mid-face = 21; vault = 15; cranium (mid-face and vault) = 36;  

mandible = 6.

Analytical scale Skull region2 SNP mtDNA Y-chromosome Geography

Intercontinental

North Eurasia

Mid-face 0.865*** 0.767*** 0.61*** 0.76***

Vault 0.416*** 0.428*** 0.448*** 0.36***

Cranium 0.783*** 0.685*** 0.57*** 0.66***

Mandible 0.617*** 0.474*** 0.6*** 0.58***

mean 0.67 0.589 0.557 0.59

Continental

East Eurasia

Mid-face 0.426* 0.25 0.5** 0.39*

Vault 0.08 0.19 0.34* 0.36*

Cranium 0.36* 0.3* 0.52** 0.44**

Mandible -0.03 -0.2 0.55 0.03

mean 0.209 0.135 0.478 0.305

West Eurasia

Mid-face 0.54*** 0.17 0.39*** 0.27**

Vault 0.16* 0.12 0.02 0.21

Cranium 0.29* 0.15 0.19 0.27*

Mandible 0.69** 0.003 0.47* 0.49***

mean 0.42 0.111 0.268 0.31

Local

North Asia

Mid-face 0.685** 0.56** 0.19 0.5**

Vault 0.22 0.24 -0.18 0.44*

Cranium 0.55* 0.45** -0.005 0.53***

Mandible -0.17 -0.22 -0.1 -0.21

mean 0.321 0.258 -0.024 0.315

Europe-Mediterranean

Mid-face 0.35* 0.1 0.21 0.25

Vault 0.21 0.12 -0.03 0.04

Cranium 0.2 0.15 0.08 0.11

mean 0.253 0.123 0.087 0.133

North Europe

Mid-face 0.17 -0.11 0.39 0.27

Vault 0.2 0.81 0.17 0.18

Cranium 0.12 0.53 0.26 0.18

Mandible -0.31 0.54 0.06 -0.12

mean 0.045 0.443 0.22 0.128
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associated with the craniometric distance matrices at all levels while the 
uni-parental markers display various patterns (Table 2; Figs. 5 and 6). 
The facial skeleton is the part of the cranium exhibiting the highest cor-
relations with genetic distances in all the geographical scales studied 
(Table 2; Figs. 3, 5 and 6). The mandible displays on average higher coef-
ficients compared to the vault. However, due to small sample sizes, the 
results for this bone are typically not statistically significant. Within the 
cranium subsets, the mid-face was significantly more associated with 
genomic distances than the vault at the highest, intercontintental scale 
(Dow-Cheverud r = 0.512, p = <0.001).  

Study design factors affecting the association between craniometric and 
genetic distances at worldwide and intercontinental levels.  

Based on our systematic literature review, we found that almost all cor-
relation coefficients published previously (Table S12, Supplementary 
online material) which can be directly compared with those obtained in 
the present study were undertaken using worldwide or intercontinental 
cranial samples, employing geometric morphometric techniques and 
Mantel tests. Thus, only these geographic levels are considered in this 
section. However, several systems of genetic markers were used in pre-
vious studies and a variety of approaches to sampling of cranial variables 
were employed. The anatomical regions defined by different authors are 
numerous and differ with regard to their study design, using, for 
example, functional anatomical regions or developmental modules. The 
aggregated categories “braincase,” “face,” “cranium” and “mandible” 
are analyzed further. The single anatomical regions for which at least five 
coefficients were published by at least two authors were considered sep-
arately and include the following categories: “basicranium,” “neuro-
cranium,” “temporal,” “vault,” “face” and “upper face.” The genetic 
marker systems employed in the literature include: autosomal short-tan-
dem repeats (i.e., STRs or microsatellites), mtDNA from coding regions, 
“classic” polymorphisms such as blood group or protein markers, and 
autosomal SNPs.  

The mean coefficients for different cranial regions and genetic 
marker systems in the reviewed literature are presented in Fig. 4a and 4b, 
respectively, with the inclusion of our original results. An exceptionally 
high mean was obtained for the vault and, surprisingly, the lowest coeffi-
cients were for the neurocranium, which is practically synonymous to the 
vault. The means of other anatomical regions vary in a relatively narrow 
range from r = 0.31 (mandible) to r = 0.56 (cranium). Generalized ana-
tomical regions—cranium, braincase and facial—display slightly higher 
mean coefficients compared to the others, including the temporal bone 
and the basicranium, that are argued to contain more phylogenetic 
information (Lockwood et al. 2004; Harvati and Weaver 2006b; von Cra-
mon-Taubadel 2009a; Reyes-Centeno et al. 2017). The coefficients for 
the cranium and braincase obtained in the present study for North Eurasia 
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are very close to the means of respective cranial regions while the coeffi-
cients for the facial skeleton and mandible are substantially higher than 
average (Fig. 4a). An interesting picture is observed for the means of the 
genetic marker systems (Fig. 4b). For instance, coefficients for the same 
sets of STRs can vary widely, likely because of a difference in cranial 
sample composition between different studies: compare STR-I and  
STR-II (Fig. 4b). The coefficients obtained in the present study for all 
three systems are about as high as the mean for previous studies using 
microsatellites. Notably, “classic” (i.e., serological) and uniparenatal 
markers at the worldwide level do not perform substantially worse than 
high-throughput nuclear markers. 

Geographic distances.  

The mean correlation coefficients between geographic and craniometric 
distances for the four cranial anatomical regions obtained in the present 
study is almost as high as the means for the autosomal genetic distances 
(i.e., r = 0.59 and r = 0.67, respectively; Table 2). It is also substantially 
higher than the mean (r = 0.41) of the 28 coefficients published pre-
viously (Table S13, Supplementary online material). The mean calcu-
lated across the five lower geographic levels and three cranial anatomical 
regions (except the mandible), r = 0.3, is slightly less than the value for 
the six analyses of continental, regional, or local levels found in the lit-
erature (r = 0.44). Importantly, our results show strong associations 
between geographical distances and the autosomal FST for some regions 
(North Eurasia – 0.95; East Eurasia – 0.83; North Asia – 0.82; Northeast 
Europe – 0.78) but not others (West Eurasia – 0.57; Europe-
Mediterranean – 0.66). 

Associations at the continental and local levels.  

In general, a substantial drop in the strength of association between the 
cranial metrics, on the one hand, and genetic markers or geography, on 

Fig. 4.  
Mean correlation coefficients 
for different cranial anatomical 
regions and modules (a) and 
genetic marker systems (b).  
Reference literature consists 
of 96 studies. STR I – values 
published by various authors 
(Roseman 2004; Harvati and 
Weaver 2006a, 2006b von 
Cramon-Taubadel 2009a, 
2009b, 2011a); STR II – values 
from Smith et al. 2007, 2016; 
Smith 2009. 
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the other hand, is observed in the continental data subsets compared to 
the full North Eurasia (intercontinental) dataset (Table 2; Figs. 5 and 6). 
The same pattern is observed in the sub-continental levels compared to 
the continental ones, with the exception of North Asia, where correlation 
values in some cases increase. As evidenced in the summary of results in 
Table 2, autosomal SNP distances display the highest correlations with 
craniometric distances compared to other systems of genetic markers. 
Likewise, the mid-facial set of measurements consistently displays the 
highest correlations with genetic distances. Therefore, the two following 
aspects are considered below in more detail: the association of the mid-
facial craniometric distances with various genetic and geographic dis-
tances (Fig. 5), and the association of autosomal SNP distances with 
various craniometric distances (Fig. 6).    

While mtDNA distances exhibit higher correlations compared to the 
Y-chromosome at the intercontinental level, the opposite is true in 4 out 

Fig. 5.  
The associations between the 
mid-facial variables, various 
systems of genetic markers, 
and geographic distances. Y-
axis on all plots corresponds to 
Pearson r correlation coeffi-
cients following Mantel tests. 
Statistically insignificant coef-
ficients (p ≥ 0.05) are depicted 
as transparent bars.
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of 5 subsets at lower levels (Fig. 5). Coefficients for the mid-facial met-
rics (Fig. 6) are typically much higher compared to the vault. The results 
for the mandible are highly variable, ranging from negative to moder-
ately high positive correlations (though not significant in most cases). 
The cranium in all geographical subsets displays slightly lower associ-
ations compared to the mid-face alone.   

The results of the Dow-Cheverud tests for the continental scales show 
that the difference between the mid-face and vault at this level only 
applies to West Eurasia (Dow-Cheverud r = 0.326, p = 0.004) but not to 
East Eurasia (Dow-Cheverud r = 0.305, p = 0.074). At the regional 
scales, the mid-face was significantly more associated with genomic 
variation only at the North Asian scale (Dow-Cheverud r = 0.393, p = 
0.045). 

Fig. 6.  
The associations between 
autosomal SNP markers and 
various anatomical regions of 
the skull. Y-axis on all plots 
corresponds to Pearson r cor-
relation coefficients following 
Mantel tests. Statistically 
insignificant coefficients (p ≥ 
0.05) are depicted as translus-
cent bars. 
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DISCUSSION 

The values of the Mantel test coefficients obtained in this study for the 
intercontinental (North Eurasian) level are moderate to high, which is 
fully consistent with previous findings at the global level. Some of the 
coefficients are among the highest published so far. At this level, all the 
systems of genetic markers employed, as well as geographic distances, 
display similar results. However, autosomal SNP distances exhibit the 
strongest associations with cranial morphology in almost all geograph-
ical scales and at all levels. This is a predictable result considering that 
the mode of inheritance of SNPs and cranial morphological traits is simi-
lar: numerous loci spread throughout the genome, no sex linkage, 
relatively low mutation rate, etc. (Lynch 1989; Weaver 2011; Aime et al. 
2015 ). Local variation of the association of cranial morphology with uni-
parental markers can, in turn, potentially reveal interesting stories about 
population history when considered against a “background” of autoso-
mal data. For instance, in 4 out of 6 geographical scales Y-chromosome 
distances are more correlated with cranial morphology than mtDNA dis-
tances. We hypothesize that this result might be due, at least in part, to 
sex-biased migration patterns in different regions of Eurasia. Thus, this 
and other demographic factors may account for the differential associ-
ation of craniometric diversity and sex-inherited genetic diversity. In 
order to further test these inferences using craniometrics, sampling crania 
of the female sex for the same populations would be necessary. In our 
opinion, simultaneous use of different systems of genetic markers in 
craniometric-genetic association studies can provide the most detailed 
picture of population history, as has been advocated in previous work 
(Herrera et al. 2014; Evteev and Movsesian 2016). Nevertheless, if only 
one type of markers is to be used, for instance as a control for population 
history or phylogeny, the preference, according to our results, should be 
given to autosomal data. 

The results of our study confirm finds of previous works showing that 
the level of association between craniometric and genetic distances dep-
ends on the part of the skull quantified and on the set of variables 
employed. In general, this association is higher for the mid-face than for 
the cranial vault in all geographical levels across North Eurasia, as 
observed by the absolute Mantel test correlation values. The Dow-
Cheverud test further showed that this difference is significant at the 
intercontinental scale, as well as at the West Eurasia and North Asia 
scales. This is despite the well-established associations of facial shape 
with climatic conditions in Eurasia (see Evteev et al. 2017 for a review). 
Importantly, previous work (Howells 1989; Betti et al. 2009) arrived at 
very similar conclusions for large worldwide datasets. The higher corre-
lations observed for mid-facial traits compared to the vault are not com-
pletely unexpected since a number of studies show that the vault is a 
rather volatile structure which can change rapidly under the influence of 
a number of factors (Alexeeva 1968; Relethford 2004b). Thus, the mid-
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facial region is often considered the most important area for ancestry 
assessment in forensic studies (e.g., Hefner 2009; Scholts et al. 2009). 
However, the analysis of coefficients published previously demonstrates 
that the strength of the association is basically identical for the face and 
braincase, at least at the worldwide level (but see Betti et al. 2009). Thus, 
the higher coefficients for the mid-facial skeleton might be specific for 
North Eurasia, suggesting that the cranial features that are most 
informative of population history or phylogeny might be found in differ-
ent parts of the skull for different geographical regions.  

Turning back to the analysis of literature data, our review sheds light 
on three primary points. First, it is clear that the cranium in general dis-
plays the strongest association with molecular genetics. The same applies 
to the generalized anatomical regions—face and neurocranium—com-
pared to single bones or smaller units. The morphology of the temporal 
bone and basicranium do not appear more “phylogenetically relevant” 
than other modules. According to the same literature analysis, the lowest 
coefficients among all parts of the skull are typically obtained for the 
mandible. In the present study, the form of the mandible can display high 
correlations with genetic distances but these are highly variable across 
the geographical scales analyzed and are typically not significant. In this 
regard, it should be noted that sample composition in our study and 
others is quite different for the mandible compared to other anatomical 
regions, as the mandible is typically poorly presented in skull collections. 
Second, our review of the literature also shows that the use of linear 
measurements instead of landmark-based data employed in most recent 
works is not inferior in the strength of correlations with genomic data. 
This is an important observation from the point of view of studying frag-
mented cranial material since linear measurements can be more easily 
collected on fragmentary remains and in a cost-effective manner with a 
standard sliding caliper, in comparison to relatively costly instrumenta-
tion required for landmark data acquisition. Third, the results of some 
previous studies (e.g., Roseman 2004; Roseman et al. 2010; von Cra-
mon-Taubadel 2014) show that the search for phylogenetically 
informative structures of the skull based on defining a priori modules 
might not be productive since “…environmental and genetic variation in 
individual traits are randomly distributed across regions of the cranium 
rather than being structured by developmental origin or degree of expo-
sure to strain” (Roseman et al. 2010: 1). The use of linear measurements, 
which often run across different bones and cranial regions, provides an 
opportunity to apply a potentially more productive “module-free” 
approach in the search for phylogenetically important variables (see Betti 
et al. 2009, 2010; Roseman 2004). Likewise, existing (Roseman 2004; 
Betti et al. 2010; Roseman et al. 2010; Evteev et al. 2020) and novel (e.g., 
Rathmann and Reyes-Centeno 2020) “module-free” approaches can 
additionally offer an exhaustive summary of association between ana-
tomical and molecular genetic variation under a framework that con-
forms to both quantitative genetics and population genetics theory. 
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With regard to how geography influences the association of cranial 
and molecular genetic variation, our results show that the correlation of 
the geographic distance matrices with craniometric ones is about as high 
as that of autosomal SNP matrices and less variable than the coefficients 
for uni-parental markers. This holds true for all anatomical regions and 
levels of comparison. However, the correlations between geographic and 
genetic matrices differ substantially in different geographical scales 
studied. Being very high in some levels, where morphological differenti-
ation is strong and geographic distances are large (North Eurasia, North 
Asia), our results show that it is only moderate in other levels (West Eur-
asia, Europe-Mediterranean). Thus, geography can only very cautiously 
be used as a proxy for genetic distances, especially at local levels.  

A less optimistic but important finding of this study is the fact that the 
strength of morphology-genetic association drops consistently and dra-
matically when moving from the intercontinental scale to lower geo-
graphic levels of comparison. In general, this result is expected as a result 
of the degree of gene flow, where populations close to each other are 
more likely to meet and exchange genes in comparison to populations far 
from each other. As such, gene flow is expected to have the immediate 
effect of homogenizing genetic structure in geographically proximate 
populations while its consequences for phenotypic variation may be 
much less pronounced, and this would affect the strength of association 
between genetic and craniometric data (Reyes-Centeno et al. 2017). Our 
results can also be explained by numerous confounding factors, the most 
apparent of which is the imperfect match between cranial and genetic 
samples. For example, in recent studies on the subject, genetic and mor-
phometric data rarely come from the same individuals and often are not 
even from the same ethno-linguistic groups. Nevertheless, a number of 
studies (Hiernaux 1956; Sanghvi 1956; Friedlander et al. 1971; Roth-
hammer and Spielman 1972; Spielman 1973; Neel et al. 1974; Jorde, 
1980; Relethford and Lees 1982) comparing somatometric variables, 
serological markers, and geographical distances using partially or com-
pletely overlapping samples show that even with such a study design, 
correlations at local levels are not high, and range from 0.17 to 0.55 
(Tables S12–S13, Supplementary online material). Another factor is the 
inherent partial non-neutrality of cranial morphology which is, compared 
to neutral genetic markers, less affected by stochastic evolutionary fac-
tors like genetic drift, mutations, or founder effects. Even if morphologi-
cal features are not under a direct influence of environmental factors, the 
need for making a functional structure makes their regulatory and pro-
tein-coding genes much more restricted in variation compared to a set of 
neutral genetic loci (see Lockwood et al. 2004; Weaver 2014). Interest-
ingly, our results show that the strength of morphology-genetic associ-
ation in North Asia is almost as high as that at the global level. This pat-
tern can be explained by the fact that North Asian populations are 
extremely diverse in terms of cranial morphology and genetics simulta-
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neously due to the large distances between the populations, their low 
population sizes, and relative isolation (Debets 1951; Jorde 1980).  

Overall, our results provide a pattern that appears to be a general rule: 
a high level of genetic and/or morphological differentiation in a region 
leads to an increase of morphology-genetic correlations. Across the six 
regions studied, mean FST values based on autosomal markers in a region 
and Mantel test coefficient values between morphological and genetic 
distances within regions display a Spearman r correlation of 0.94 (p = 
0.003). The same value for mean FST and mean Mahalanobis distance 
values is 0.71 (p = 0.14). Thus, the larger craniometric and genetic dis-
tances are in a region, the more similar picture of population relationship 
they tend to provide. As such, our results emphasize the need for invest-
ing much more effort in studying factors affecting the association 
between genetic and craniometric distances at different geographical 
scales. The strength of this association at worldwide or intercontinental 
levels is well established and is consistently moderate to high almost irre-
spectively of the variables used or the part of the skull employed. How-
ever, this firm observation can be of little practical value since in the 
great majority of craniometric studies, the researcher is concerned with 
interpopulation relationships at much lower geographic scales.  

As a whole, our study has implications for the way that craniometric 
data is utilized in studies that aim to reconstruct the human past. We have 
shown that geographical scale is an important analytical factor affecting 
the association between genomic and cranial variation. Because the 
association between molecular genetic and craniometric datasets is not 
uniform across different geographical scales in Eurasia, studies that 
reconstruct population affinities or migration patterns need to explicitly 
consider the evolutionary forces that might differentially act across geo-
graphical space (e.g., see Hubbe, this volume, for a review on the effects 
of population migration events in Eurasia). Further work is also necess-
ary in understanding how mechanisms in the past have influenced pat-
terns of genomic and cranial variation of recent and present-day popula-
tions at different geographical scales.  
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Cranial region Code* Name 

mid-face 57/WNB Simotic chord

mid-face -/SIS Simotic subtense

mid-face 56 (2)/- Total lateral length of the nasalia

mid-face 50/- Maxillofrontal (interorbital) breadth

mid-face Nasal height from infranasion

mid-face 54/ NLB Nasal breadth

mid-face Premaxilla-4 (Evteev et al. 2017) Frontal process height

mid-face Premaxilla-6 (Evteev et al. 2017) Height of the superior part of the piriform aperture

mid-face Premaxilla-8 (Evteev et al. 2017) Zygoorbitale subtense

mid-face -/SSS Zygomaxillary subtense

mid-face 45(3)/- Zygoorbitale chord

mid-face ≈46/ZMB Zygomaxillary chord

mid-face Maxilla-3 (Evteev et al. 2017) Oblique “cheek height”

mid-face Maxilla-4 (Evteev et al. 2017) Lateral length of the body of the maxilla

mid-face Maxilla-5 (Evteev et al. 2017) Length of the palate from subspinale

mid-face Maxilla-6 (Evteev et al. 2017) Internal breadth of the palate

mid-face Cavity-2 (Evteev et al. 2017) Inferior anterior breadth of the nasal cavity 

mid-face Cavity-3 (Evteev et al. 2017) Posterior height of the nasal cavity

mid-face Cavity-4 (Evteev et al. 2017) Inferior posterior breadth of the nasal cavity

mid-face 59/- Morphological height of the choanae

mid-face ≈ 59(1)/- Choanae breadth

APPENDIX. SUPPLEMENTARY TABLES S1–S5.

 
 
*      Martin 1928 / Howells 1989. 
**    Nomenclature of the Pearson’s Biometrics School. 

Table S1.  
List of skull anatomical regions analyzed and craniometric variables.
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Description Source

Distance between the closest points of two nasomaxillary sutures Martin 1928; Howells 1989

Subtense to simotic chord Howells 1989

Infranasion – nasomaxillare Martin 1928; Evteev et al. 2017

Maxillofrontale-maxillofrontale Martin 1928; Evteev et al. 2017

Infranasion-nariale Evteev et al. 2017

Alare-alare  (nasolaterale-nasolaterale) Martin 1928; Howells 1989

Maxillofrontale - the point of intersection of the inferior orbital margin and the tangent 
line to the lower margin of the sulcus lacrimalis  Evteev et al. 2017

Nasomaxillare - conchale Evteev et al. 2017

Subtense to the chord between left and right zygoorbitale Evteev et al. 2017

Subtense from tubspinale to the chord between left and right zygomaxillare Howells 1989

Zygoorbitale - zygoorbitale Martin 1928

Zygomaxillare- zygomaxillare Martin 1928

Sum of the distances from the middle of the zygomaxillary suture to zygoorbitale and 
zygomaxillare Evteev et al. 2017

Distance from sphenomaxillare superior to the most inferior point of the foramen 
infraorbitale Evteev et al. 2017

Subspinale-staphylion Evteev et al. 2017

Distance between left and right palatomaxillare laterale Evteev et al. 2017

Maximal distance between the lateral walls of the nasal cavity below crista conchalis 
immediately after piriform aperture margin but before hiatus maxillaris Evteev et al. 2017

From the point where the pterygopalatine suture intersects with the margin of the 
vomer  to the most distant point on the floor of the nasal cavity Evteev et al. 2017

Maximal distance between the lateral walls of the nasal cavity below crista conchalis 
anterior to choanae but posterior to hiatus maxillaris Evteev et al. 2017

Staphylion - hormion Martin 1928

Distance between the points of intersection of the pterygopalatine suture and crista 
conchalis Martin 1928; Evteev et al. 2017

cont.
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Cranial region Code* Name 

neurocranium 1/GOL Maximum cranial length

neurocranium 8/XCB Maximum cranial breadth

neurocranium 17/BBH Basion–bregma height

neurocranium 5/BNL Cranial base length

neurocranium 9/M9 Minimum frontal breadth

neurocranium 11/AUB Biauricular breadth

neurocranium 29/FRC Nasion-bregma chord

neurocranium Sub. Nβ (Biometrics**) Frontal subtense

neurocranium 30/PAC Bregma-lambda chord

neurocranium Parietal subtense

neurocranium 31/OCC Lambda-opisthion chord

neurocranium Occipital subtense

neurocranium 26/M26 Sagittal frontal arc

neurocranium 27/M27 Saggital parietal arc

neurocranium 28/M28 Saggital occipital arc

mandible 71а/- Minimum width of the ramus

mandible 65/- Condylar breadth

mandible 66/- Bigonial breadth

mandible 67/- Anterior breadth

mandible 69/- Symphyseal height

mandible 69(3)/- Corpus width of the mandible

Table S1. cont.

 
 
*      Martin 1928 / Howells 1989. 
**    Nomenclature of the Pearson’s Biometrics School. 
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Description Source

Glabella – opisthocranion Martin 1928

Eurion-eurion Martin 1928

Basion–bregma Martin 1928

Basion-nasion Martin 1928

Frontotemporale-frontotemporale Martin 1928

Auriculare - auriculare Martin 1928

Nasion-bregma Martin 1928

Subtense to the nasion-bregma chord Alekseev and Debets 1964

Bregma-lambda Martin 1928

Subtense to the bregma-lambda chord Alekseev and Debets 1964

Lambda-opisthion Martin 1928

Subtense to the lambda-opisthion chord Alekseev and Debets 1964

Arc from nasion to bregma Martin 1928

Arc from bregma to lambda Martin 1928

Arc from lambda to opisthion Martin 1928

Minimum width of the ramus Martin 1928

Maximum breadth between the mandibular condyles Martin 1928

Maximum breadth between the mandibular angles Martin 1928

Maximum breadth between the mental foramina Martin 1928

Height of the mandibular symphysis in the mid-sagittal plane Martin 1928

Maximum width of the mandibular body at the level of the mental foramen Martin 1928

Alekseev, V. P., and G. F. Debets. 1964. Kraniometria. Metodika anthropologitsheskh isledo-
vaniy. Izd. Nauka, Moskva. 

Evteev, A. A., A. A. Movsesian, and A. N. Grosheva. 2017. The association between mid-
facial morphology and climate in northeast Europe differs from that in north Asia: Impli-
cations for understanding the morphology of Late Pleistocene Homo sapiens. Journal of 
Human Evolution 107: 36–48. 

Howells, W. W. 1989. Skull shapes and the map. Cambridge: Peabody Museum Press. 

Martin, R. 1928. Lehrbuch der Anthropologie in Systematischer darstellung. 2-e Bd. Kraniol-
ogie. Osteologie. Jena. 
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Genetic Population (Affymetrix) N References Cranial Population Match

Abkhasian 9 Lazaridis et al. 2014 Abkhazian

Adygei 17 Lazaridis et al. 2014 Shapsug

Armenian 10 Lazaridis et al. 2014 Armenian

Armenian_WGA 3 Lazaridis et al. 2014 Armenian

Bulgaria_POPRES 2 Nelson et al. 2008 Bulgarian

Bulgarian 10 Lazaridis et al. 2014 Bulgarian

Buryat 25 Xing et al. 2010 Buryat

CHB(Han_Chinese_in_Beijing_China) 84 Altschuler et al. 2010 Han (North China)

Han_NChina 10 Lazaridis et al. 2014 Han (North China)

Chukchi 20 Lazaridis et al. 2014 Chukchi

Druze 39 Lazaridis et al. 2014 Druze

Eskimo_Naukan 13 Lazaridis et al. 2014 Eskimo (Siberian Yupik)

Finland_POPRES 2 Nelson et al. 2008 Finn

Finnish 104 Auton et al. 2015 Finn

TSI(Tuscans_italy) 88 Altschuler et al. 2010 Italian

Italian_Bergamo 12 Lazaridis et al. 2014 Italian

Italian_South 1 Lazaridis et al. 2014 Italian

Italian_Tuscan 8 Lazaridis et al. 2014 Italian

Italy 213 Nelson et al. 2008 Italian

Japan_POPRES 68 Nelson et al. 2008 Japanese

Japanese 29 Lazaridis et al. 2014 Japanese

Japanese 13 Xing et al. 2009 Japanese

JPT(Japanese_in_Tokio) 91 Altschuler et al. 2010 Japanese

Mansi 8 Lazaridis et al. 2014 Mansi

Mongola 6 Lazaridis et al. 2014 Mongol

Mongola 2 López-Herráez et al. 2009 Mongol

Mordovian 10 Lazaridis et al. 2014 Mordovian

North_Ossetian 10 Lazaridis et al. 2014 Ossetian

Norway_POPRES 2 Nelson et al. 2008 Norse

Norwegian 11 Lazaridis et al. 2014 Norse

Romania_POPRES 16 Nelson et al. 2008 Romanian

Table S2. 
List of genomic populations and sample sizes for Affymetrix dataset (50786 SNPs), paired with cranial populations.

cont.
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Genetic Population (Affymetrix) N References Cranial Population Match

Russia_POPRES 8 Nelson et al. 2008 Russian

Russian 22 Lazaridis et al. 2014 Russian

Russian 1 López-Herráez et al. 2009 Russian

Turkey_POPRES 7 Nelson et al. 2008 Turk

Turkish 4 Lazaridis et al. 2014 Turk

Turkish_Adana 10 Lazaridis et al. 2014 Turk

Turkish_Aydin 7 Lazaridis et al. 2014 Turk

Turkish_Balikesir 6 Lazaridis et al. 2014 Turk

Turkish_Istanbul 10 Lazaridis et al. 2014 Turk

Turkish_Kayseri 10 Lazaridis et al. 2014 Turk

Turkish_Trabzon 9 Lazaridis et al. 2014 Turk

Tuvinian 10 Lazaridis et al. 2014 Tuvinian

Ukraine_POPRES 2 Nelson et al. 2008 Ukrainian

Ukrainian_East 6 Lazaridis et al. 2014 Ukrainian

Ulchi 25 Lazaridis et al. 2014 Ulchi

Yakut 20 Lazaridis et al. 2014 Yakut

Total number of individuals: 1093
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Genetic Population (Illumina) N References Cranial Population Match

Finland 157 Leu et al. 2010 Finn

Finnish 100 Auton et al. 2015 Finn

Finnish 2 Hellenthal et al. 2014 Finn

Karelians 15 Yunusbayev et al. 2015 Karelian

Komis 16 Yunusbayev et al. 2015 Komi

Mordovian 15 Yunusbayev et al. 2012 Mordovian

Russian_central and South 32 Yunusbayev et al. 2015 Russian

Ukranian 20 Yunusbayev et al. 2012 Ukrainian

Total number of individuals: 357

Table S3. 
List of genomic populations and sample sizes for Illumina dataset (114109 SNPs), paired with cranial populations.
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Cranial Population mtDNA* Y-chromosome**

Abkhazian 137 (Kutuev 2010) 162 (Kutuev 2010)

Armenian 191 (Richards 2000) 57 (Kutuev 2010)

Bolgarian 855 (Karachanak 2012) 808 (Karachanak 2013)

Buryat 101 (Pakendorf et al. 2003) 81 (Jin et al. 2009)

Chukchi 24 (Starikovskaya et al. 1998) No data

Druze 622 (Shlush 2008) 109 (Zalloua 2008)

Eskimo (Siberian Yupik) 50 (Raff et al. 2015) 33 (Lell et al. 2002)

Evenk 40 (Pakendorf et al. 2003) 96 (Tambets et al. 2004)

Finn 432 (Meinila 2001; Richards 1996) 316 (Lappalainen 2006; Heinrich 2009)

Han (North Chinese) 322 (Jin et al. 2009) 242 (Jin et al. 2009)

Italian 70 (Rienzo 1991) 347 (Coia 2013; Batini 2015)

Japanese 211 (Jin et al. 2009) 154 (Jin et al. 2009)

Karelian 303 (Lappalainen 2008) 202 (Lappalainen 2006, 2008)

Khanty 209 (Pimenoff et al. 2006) 27 (Pimenoff et al. 2006)

Komi 214 (Osipova 2005) 153 (Mirabal 2009; Trofimova 2015)

Latvian 299 (Pliss 2006) 159 (Pliss 2015)

Mansi 95 (Pimenoff et al. 2006) 25 (Pimenoff et al. 2006)

Mongol 95 (Jin et al. 2009) 65 (Jin et al. 2009)

Mordovian 102 (Bermisheva 2002) 59 (Trofimova 2015)

Norse 74 (Passarino 2002) 1789 (Dupuy 2006; Batini 2015)

Ossetian 162 (Kutuev 2010) 153 (Kutuev 2010)

Romanian 146 (Jankova-Ajanovska 2014) 67 (Bosch 2005)

Russian 306 (Malyarchuk 2004) 183 (Fechner 2008; Malyarchuk 2008;  
Mirabal 2009)

Saami 637 (Ingman 2007) 189 (Dupuy 2006; Batini 2015)

Shapsug (Adygean) 155 (Kutuev 2010) 154 (Kutuev 2010)

Turk 190 (Quintana-Murci 2004;  
Jankova-Ajanovska 2014) 20 (Batini 2015)

Ukrainian 680 (Pshenichnov 2013) 154 (Mielnik-Sikorska 2013)

Ulchi 160 (Sukernik et al. 2012) 53 (Lell et al. 2002) (combined with the Nanai)

Yakut 83 (Pakendorf et al. 2003) 155 (Tambets et al. 2004)

Total 6965 6012

 
 
*      Polymorphisms: A, B, CZ, D, F, G, HV, H, I, J, K, L, M, N, R, T, U*, U1, U2, U3, U4, U5, U6, U7, U8, V, W, X, Y. 
**    Polymorphisms: B, C, D, E, F, G, H, I, IJ, J, K, L, N, P, Q, R1a, R1b, R*, T.

Table S4. 
Sample sizes for paired uni-parental genetic data (mitochondrial and Y-Chromosome DNA polymorphisms).
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Geographical 
Scale

SNP mtDNA Y-
Chromosme

Geography

r-value p-value r-value p-value r-value p-value r-value p-value

Eurasia

mid-face 0.904 0.001*** 0.789 0.001*** 0.589 0.001*** 0.800 0.001***

vault 0.409 0.001*** 0.427 0.001*** 0.441 0.001*** 0.388 0.001***

cranium 0.805 0.001*** 0.700 0.001*** 0.570 0.001*** 0.693 0.001***

mandible 0.243 0.031* 0.173 0.105 0.247 0.007** 0.279 0.011*

mean 0.590 0.522 0.462 0.540

East Eurasia

mid-face 0.639 0.011* 0.446 0.014* 0.463 0.004** 0.511 0.002**

vault 0.152 0.377 0.275 0.085 0.413 0.016* 0.421 0.01**

cranium 0.438 0.028* 0.356 0.050 0.553 0.003** 0.496 0.007**

mandible 0.141 0.535 0.057 0.793 0.332 0.063 0.145 0.427

mean 0.342 0.284 0.440 0.393

West Eurasia

mid-face 0.631 0.001*** 0.170 0.262 0.393 0.003** 0.265 0.017*

vault 0.169 0.280 0.088 0.622 0.028 0.801 0.210 0.092

cranium 0.318 0.04* 0.123 0.509 0.196 0.104 0.271 0.042*

mandible 0.849 0.002** 0.165 0.598 0.395 0.048* 0.283 0.031*

mean 0.492 0.136 0.253 0.257

North Asia

mid-face 0.765 0.002** 0.676 0.001*** 0.222 0.259 0.537 0.001***

vault 0.207 0.272 0.281 0.098 -0.173 0.385 0.460 0.009**

cranium 0.576 0.01** 0.507 0.006** -0.015 0.935 0.587 0.002**

mandible -0.245 0.477 -0.146 0.564 -0.053 0.812 -0.075 0.678

mean 0.326 0.330 -0.005 0.377

Europe-
Mediterranean

mid-face 0.321 0.105 0.085 0.682 0.091 0.638 0.122 0.538

vault 0.188 0.447 0.081 0.713 -0.033 0.885 0.039 0.887

cranium 0.221 0.363 0.116 0.630 0.060 0.730 0.121 0.604

mean 0.264 0.153 0.028 0.165

Northeast 
Europe

mid-face 0.139 0.687 -0.117 0.741 0.490 0.055 0.242 0.330

vault 0.190 0.699 0.790 0.065 0.213 0.417 0.182 0.447

cranium 0.153 0.695 0.537 0.208 0.292 0.260 0.193 0.456

mandible 0.002 1.000 0.850 0.049* 0.125 0.786 0.012 0.962

mean 0.121 0.515 0.280 0.157

 
 
       Notes: r-values are Pearson correlation coefficients; statistical significance after 1000 permutations: two-tailed p-

value *<0.05;  **<0.01; ***<0.001.

Table S5. 
Correlations between the matrices of craniometric, genetic, and geographic distances for size-standardized craniometric 
variables.


